lunes, 11 de junio de 2012

sahj

sahjk

gj

sfdh

p

ulñ

10.1 Métodos de purificación y análisis de los ácidos nucleicos.

introduccion

objetivos

portada

miércoles, 6 de junio de 2012

TAREA DE LA UNIDAD 8



es un gen humano del tipo de los gen supresor de tumores, que regulan el ciclo celular y evitan la proliferación incontrolada. La proteína BRCA1, producto de este gen, forma parte del sistema de detección y reparación de los daños del ADN. Las variaciones de este gen están implicadas en algunos tipos de cáncer, especialmente el cáncer de mama. El gen BRCA1 está situado en el brazo largo (q) del cromosoma 17, en la posición 21, desde el par de bases 38.449.843 hasta el par de bases 38.530.933

Algunas variaciones del gen BRCA1 conducen a un mayor riesgo para generar cáncer de mama. Los investigadores han identificado más de 600 mutaciones en el gen BRCA1, muchos de los cuales están asociados con un mayor riesgo de cáncer.
Estas mutaciones pueden ser cambios en una o un pequeño número de pares de bases de ADN. Esas mutaciones pueden ser identificadas mediante la técnica de PCR y secuenciación del ADN.
En algunos casos, grandes segmentos de ADN se han reorganizado. Los grandes sectores, también llamados grandes reordenamientos, puede ser una deleción o una duplicación de uno o varios exones del gen. Los métodos clásicos para la detección de mutaciones (secuenciación) son incapaces de revelar las mutaciones. Se proponen otros métodos: Q-PCR, Multiplex Ligation-dependent Probe Amplification (MLPA), y Quantitative Multiplex PCR of Shorts Fluorescents Fragments (QMPSF). Los nuevos métodos se han propuesto recientemente: el análisis de heterodúplex (HDA) en electroforesis capilar o también hibridación genómica comparada (CGH array).
La participación de BRCA1 en el desarrollo del cáncer de mama se ha propuesto en varios estudios en los que está involucrada la hipermetilación de su promotor. Algunos resultados sugieren que la hipermetilación podría ser considerada como un mecanismo para inactivar la expresión de BRCA1, que ha sido reportada en algunos casos de cáncer.Un gen BRCA1 mutado normalmente produce una proteína que no funciona correctamente porque es anormalmente corta. Los investigadores creen que las proteínas defectuosas BRCA1 no está en condiciones de ayudar a corregir las mutaciones que se producen en otros genes. Estos defectos se acumulan y pueden permitir a las células crecer y dividirse de forma descontrolada, formando un tumor. Además de cáncer de mama, las mutaciones en el gen BRCA1 también aumentar el riesgo de cáncer de ovario, trompas de Falopio y de la próstata. Además, las lesiones precancerosas (displasia) dentro de la trompa de Falopio se han relacionado con mutaciones genéticas BRCA1.


 

es.wikipedia.org/wiki/BRCA1

tarea unidad IX

LAS BACTERIAS DE DIFERENTES ESPECIES PUEDEN COMPARTIR PLASMIDOS DE MANERA NATURAL?

SI , SI PUEDEN COMPARTIR PLASMIDOS  LAS BACTERIAS  DE DIFERENTES ESPECIES  YA QUE TODAS LAS BACTERIAS TIENENCARACTERISTICAS SEMEJANTES  , Y  ALGUNOS PLASMIDOS NO RECONOCERAN LAS DIFERENCIAS Y ENTRARAN EN LAS BACTERIAS PROVOCANDO SU TRANSFORMACION PERO TAMBIEN EXISTEN PLASMIDOS ESPECIFICOS QUE SOLO PUEDEN ENTRAR EN LA PARED DE ALGUNAS BACTERIAS  POR CARACTERISTICAS ESPECIFICAS DE ESAESPECIE DE BACTERIA.

lunes, 4 de junio de 2012

QUIMICOS


METODO DEL FOSFATO CALCICO
Uno de los métodos más baratos (y fiables) es la transfección mediante fosfato de calcio, originalmente descubierta por F. L. Graham y A. J. van der Eb en 1973. Una solución salina tamponada con HEPES y que contiene iones fosfato se combina con una solución de cloruro de calcio que contiene el DNA a transfectar. Cuando ambas se combinan, se forma un precipitado fino formado por el calcio cargado positivamente y el fosfato cargado negativamente, que el DNA en su superficie. Esta suspensión se añade a las células que se quieren transfectar (normalmente un cultivo celular en monocapa). Mediante un proceso no comprendido completamente , las células toman parte del precipitado, y junto con él, el DNA.

METODO DE LIPOSOMAS
Otros métodos usan compuestos orgánicos altamente ramificados, los llamados dendrímeros, para unir el DNA e introducirlo en la célula. Un método muy eficiente es la inclusión del DNA en liposomas, pequeños cuerpos formados de una membrana en cierto modo similar a la membrana plasmática de la célula y que puede fusionarse con la misma, liberando el DNA al interior celular. Con células eucariotas, la transfección basada en la interacción lípido-catión es la más comúnmente utilizada, ya que son más sensibles a este método.
METODO DEL DEAE DEXTRANO
Otro método es el uso de polímeros catiónicos (o policationes) como DEAE-dextrano o polietilenimina. El DNA, cargado negativamente, se une al policatión y el complejo es endocitado por la célula. 
METODO DEL DNA DESNUDO

El DNA desnudo (técnica en fase altamente experiemtal) es incapaz de entrar en una célula y aún consiguiendo entrar en ellas es rápidamente degradado

METODO DE PEPTIDOS FUSIOGENICOS

Los péptidos fusiogénicos surgen en una linea de trabajo que nos permita paliar ... Estos péptidos fusiogénicosa se utilizan para compactar DNA

MECANISMOS DE TRANSFERENCIA ARTIFICIAL

FISICOS

microinyección es un proceso que consiste en utilizar microagujas para insertar sustancias a un nivel microscópico o en el límite de lo macroscópico dentro de una célula viva. Es un simple proceso mecánico en el cual una aguja extremadamente fina penetra la membrana celular y a veces la membrana nuclear para lanzar su contenido. La microinyección es normalmente realizada bajo un microscopio óptico llamado micromanipulador. El proceso es frecuentemente usado como un vector en ingeniería genética y transgenética para insertar material genético en una célula. El proceso de clonación también involucra microinyecciones.
Las microagujas miden alrededor de 10 micrómetros. Pueden contener cerca de 15 microlitros de ADN. Es similar a la sección transversal de un cabello humano. Es un método muy preciso de transferencia génica. Requiere personal capacitado.

 electroporación o electropermeabilización es un significativo aumento de la conductividad eléctrica y la permeabilidad de la membrana plasmática celular causado por un campo eléctrico aplicado externamente. Es habitual en biología molecular como forma de introducción de diferentes sustancias en células, como por ejemplo sondas moleculares, un fármaco que puede cambiar las funciones celulares o un fragmento de DNA codificante, como puede ser un plásmido.
Cuando el voltaje que atraviesa una membrana plasmática excede su rigidez dieléctrica se forman poros. Si la fuerza del campo eléctrico aplicado o la duración de la exposición al mismo se eligen apropiadamente, los poros formados por el pulso eléctrico se sellan tras un corto período, durante el cual los compuestos extracelulares tienen la oportunidad de entrar a la célula. Sin embargo, una exposición excesiva de células vivas a campos eléctricos puede causar apoptosis o necrosis, procesos que provocan la muerte celular.
En biología molecular, el proceso de electroporación es usado habitualmente para la transformación de bacterias, levaduras y protoplastos vegetales. Además de membranas lipídicas, las bacterias también tienen una pared celular compuestas de peptidoglicano y sus derivados. Sin embargo, las paredes son porosas por naturaleza y sólo actúan como corazas que protegen a la célula de impactos ambientales severos. Si bacterias y plásmidos se mezclan los plásmidos pueden transferirse al interior de las células tras la electroporación. En este proceso suelen emplearse varios cientos de voltios, que atraviesan una distancia de varios milímetros. A continuación, las células han de ser manipuladas cuidadosamente hasta que tienen la oportunidad de dividirse, produciendo nuevas células que contendrán copias del plásmido. Este proceso es aproximadamente diez veces más efectivo que la transformación por métodos químicos.

Biobalistica:Una aproximación directa a la transfección es la biolística o gene gun (pistola génica), en la que el DNA se une a una nanopartícula compuesta de algún sólido inerte, generalmente oro, que es "disparada" directamente en el núcleo de la célula diana. El DNA puede también ser introducido en las células usando un virus como vector. En estos casos, la técnica es llamada transducción, y se dice que las células se transducen.

TRANSFECCION

La transfección consiste en la introducción de material genético externo en células eucariotas mediante plásmidos, vectores víricos (en este caso también se habla de transducción) u otras herramientas para la transferencia. El término transfección para métodos no virales se usa en referencia a células de mamífero, mientras que el término transformación se prefiere para describir las transferencias no virales de material genético en bacterias y células eucariotas no animales como hongos, algas o plantas.
La transfección de células animales generalmente se lleva a cabo abriendo poros o "agujeros" transitorios en la membrana plasmática de las células mediante electroporación, para permitir el paso del material genético (como construcciones de DNA superenrollado o siRNA) aunque pueden ser transfectadas incluso proteínas (como anticuerpos, por ejemplo). Además de la electroporación, se pueden utilizar otras técnicas para efectuar la transfección, como por ejemplo liposomas producidos mediante la mezcla de lípidos catiónicos con el material genético, que se fusionarán con la membrana plasmática celular y depositarán su carga adentro.
El significado original de "transfección" era "infección por transformación", es decir, introducción de DNA o RNA desde un virus procariótico ó bacteriófago en las células, resultando en una infección. Al tener el término transformación otro sentido en biología celular animal (un cambio genético que permite la propagación durante largos periodos de células en cultivo, o la adquisición de propiedades típicas de las células cancerígenas), el término transfección adquirió, para células animales, su actual signifiado de cambio en las propiedades celulares por la introducción de material genético.

TRANSDUCCION

La transducción es un proceso mediante el cual el ADN es transferido desde una bacteria a otra mediante la acción de un virus. También se utiliza para designar al proceso mediante el cual ADN exógeno es introducido en una célula mediante un vector viral. Esta es una herramienta que usualmente utilizan los biólogos moleculares para introducir en forma controlada un gen extraño en el genoma de una célula receptora.
Cuando los bacteriófagos (virus que infectan bacterias) infectan una célula bacteriana, su modo normal de reproducción consiste en capturar y utilizar la maquinaria de replicación, transcripción, y traducción de la célula de la bacteria receptora para producir gran cantidad de virones, o producir partículas virales, incluido el ADN o ARN viral y la cubierta de proteína.


CONJUGACION

CONJUGACION:

La conjugación bacteriana es el proceso de transferencia de información genética desde una célula bacteriana donadora a otra receptora. Este proceso fue descubierto por Joshua Lederberg y Edward Tatum en 1946. Este proceso es promovido por determinados tipos de plásmidos, que portan un conjunto de genes cuyos productos participan en el proceso, y que requiere contactos directos entre ambas células, con intervención de estructuras superficiales especializadas y de funciones específicas (pilus sexuales en los Gram negativos, y contacto íntimo en los Gram positivos).
Algunos de estos plásmidos se comportan como episomas, es decir, que pueden integrarse en el cromosoma; en este caso, si se produce la conjugación, se puede transferir el propio plásmido más un segmento adyacente del cromosoma, que a su vez podrá recombinarse con secuencias homólogas del cromosoma del receptor, dando lugar a un cromosoma híbrido

MECANISMOS DE TRANSFERENCIA NATURAL

TRANSFORMACION

 TRANSFORMACION es la altertérminos para las alteraciones genéticas resultantes de introducir ADN por virus (transducción) o por contactos intercelulares entre bacterias (conjugación). A la transformación de células animales se le llama transfección.
El término transformación es también usado, de manera más general, para describir mecanismos de transferencia de ADN o ARN en biología molecular (es decir, teniendo en cuenta más que las consecuencias genéticas). Por ejemplo la producción de transgénicos como maíz transgénico requiere la inserción de nueva información genética en el genoma del maíz usando el mecanismo apropiado de transferencia de ADN; el proceso se le llama comúnmente transformación.
El ARN también puede ser transferido en las células usando métodos similares, pero esto no provoca normalmente cambios heredables y por lo tanto no es información real.





 

OBJETIVOS

CONOCER CUALES SON LOS MECANISMOS DE TRANSFERENCIA DEL MATERIAL GENETICO, NATURALES Y ARTIFICIALES.


CONOCER EN QUE CONSISTE CADA UNO DE LOS MECANISMOS( NATURALES Y ARTIFICIALES)

PORTADA


INSTITUTO TECNOLOGICO DE CIUDAD ALTAMIRANO



BIOLOGIA MOLECULAR



UNIDAD
9



TRANSFERENCIA DEL MATERIAL GENETICO



ALUMNO:
MIGUEL ANGEL ARZATE TORRES





MAESTRO:
FRANCISCO JAVIER PUCHE ACOSTA

TAREA UNIDAD 8